2016-05-21 安徽公务员考试网
1.在2011年世界产权组织公布的公司全球专利申请排名中,中国中兴公司提交了2826项专利申请,日本松下公司申请了2463项,中国华为公司申请了1831项,分别排名前3位,从这三个公司申请的专利中至少拿出多少项专利,才能保证拿出的专利一定有2110项是同一公司申请的专利:
A.6049
B.6050
C.6327
D.6328
2.有300名求职者参加高端人才专场招聘会,其中软件设计类、市场营销类、财务管理类和人力资源管理类分别有100、80、70和50人。问至少有多少人找到工作,才能保证一定有70名找到工作的人专业相同:
A.71
B.119
C.258
D.277
3.某单位某月1—12日安排甲、乙、丙三个人值夜班,每人值班4天。三人各自值班期数字之和相等。已知甲头两天值夜班,乙9、10日值夜班,问丙在自己第一天与最后一天值夜班之间,最多有几天不用值夜班:
A.6
B.4
C.2
D.0
参考答案与解析:
1.B【解析】要保证拿出的专利一定有2110项是同一公司申请的专利,考虑最不利情况,拿出了中国华为公司申请的1831项、日本松下公司的2109项、中国中兴公司的2109项,在此极端情况下依然不满足条件。此时,华为公司已全部拿出,从剩下的两个公司任意拿出一项,均满足条件“保证拿出的专利一定有2110项是同一公司申请的专利”,故至少需要拿出1831+2109+2109+1,相加尾数为0,只有B项正确。
2.C【解析】要保证一定有70名找到工作的人专业相同,则每个专业应最少让69个人找到工作,而人力资源本身只有50人,则这50人都找到工作,则四类专业可就业的人数分别为69、69、69、50,总和为257人。此时再多1人,则必然有一个专业达到70人,因此所求最少人数为258人。
3.D【解析】由于连续的1—12日值班,同时又注意到“三人各自值班期数字之和相等”,所以已知甲值班在1日和2日,所以11日和12日也必须是他值班;同理,乙9日和10日值班,则3日和4日必须安排他值班。所以剩下的5、6、7、8日就只能让丙值班,既然丙连续值班,所以没有休息日。